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In this paper, we investigate the speed of moving boundaries for melting micro/nanoparticles
in the initial and final stages using asymptotic matchings in a weak formulation of the prob-
lem. We find that such a speed is initially proportional to the flux across the moving bound-
ary, however a blowup occurs in a finite time when the surface tension is considered, both
numerically and theoretically, by assuming linear relations between thermal conductivities
and diffusivities, which paves the way to tackle the related two and higher phase change
problems. Last but not least, we verify our theoretical outcomes using a quasi-stationary
approximation approach.
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1. Introduction

Phase changes are ubiquitous in nature and technologies. Usually, bulk melting temperature is
independent on its size. However, micro/nanoparticle melting temperature depends on its size
owing to the higher value of surface by the volume ratio. Such an effect will lower the melting
temperature (Buffat and Borel, 1976), which can be described by the Gibbs-Thomson equation
(Langer, 1980) (see Eq. (2.3)). The lowering of the melting temperature will promote the molten
speed, especially towards the final stage of the melting process resulting in blowing up the
melting speed in a finite time (Herrero and Velázquez, 1996; McCue et al., 2009) (see Fig. 2).

It is found that the prescribed Gibbs-Thomson condition at the solid-molten interface leads
to mathematical complexity of solving the Stefan problems analytically (Carslaw and Jaeger,
1959; Crank, 1984) so that asymptotic techniques, for example using the large Stefan number
(Davis and Hill, 1982; Herrero and Velázquez, 1997; Kucera and Hill, 1986; McCue et al., 2008,
2009) and numerical methods (Crank, 1984; Meyer, 1973; Voller and Cross, 1981), are sought.
The existence and uniqueness of certain functions related to phase-change problems are also
studied (Ceretani et al., 2020). Moreover, the Gibbs-Thomson condition imposed on the mov-
ing boundary poses difficulty on using the Baiocchi transform so that one can not employ the
enthalpy method (Meyer, 1973; Voller and Cross, 1981) to tackle the governing equations nu-
merically (McCue et al., 2009). Due to the abundant aforementioned theoretical and numerical
methods on solving the two-phase Stefan problems taking into account the surface tension, here,
we extend our investigation by observing that such a condition can be naturally absorbed in the
weak formulation (Evans, 2010; Roubiček, 2013) of the problem. Therefore, upon using asymp-
totic matchings, the retreating speed of the moving boundary at the initial and final stages can
be estimated without directly solving the governing equations. We find that the initial speed
depends linearly on the incoming heat flux at the boundary while the final speed will experience
a finite time blowup, which is consistent with the existing literature (Herrero and Velázquez,
1996; McCue et al., 2009).
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In order to verify our outcomes, for simplicity, we assume that the solid temperature is
constant. As the system is tiny, the molten temperature can reach quasi-stationary states after
∆t so that a more complicated diffusion equation can be approximated by solving the Laplace
equation at a certain time t (Howison, 2005; Yi, 2005). The molten temperature can then
be solved using Eq. (3.1), from which the frontier of the moving boundary can be predicted
iteratively by taking into account both the curvature and the surface tension, i.e. Eq. (3.2)
by minimizing Eq. (3.3). The present author has successfully employed such methodology to
scrutinize the effects of curvature and surface tension on the solidification of micro/nanoparticles,
and designs certain smart materials (Gao et al., 2023).

The structure of the present paper is organized as follows: governing equations for the present
problem are given in Section 2, followed by a quasi-stationary approximation solution in Sec-
tion 3. While weak formulations and a brief discussion of the existence of weak solutions are
shown in Section 4, asymptotic analysis based on the weak formulations is ultimately made in
the final Section.

2. Governing equations

Governing equations for both the molten and solid regimes by assuming axisymmetric mi-
cro/nano particles, are given below

∂Tℓ(r, t)

∂t
= κℓ

[∂2Tℓ(r, t)

∂r2
+
2

r

∂Tℓ(r, t)

∂r

]

R < r < a

∂Ts(r, t)

∂t
= κs

[∂2Ts(r, t)

∂r2
+
2

r

∂Ts(r, t)

∂r

]

0 < r < R

(2.1)

where Tℓ(r, t), Ts(r, t), κℓ, κs denote the molten temperature, solid temperature, molten thermal
diffusivity and solid thermal diffusivity, respectively. For simplicity, we drop (r, t) for Tℓ(r, t) and
Ts(r, t). We comment that we investigate the simplest possible model in which no convective
and source effects are imposed on the system. The schematic of the present problem is shown in
Fig. 1.

Fig. 1. Schematic diagram of the present melting process where the micro/nano particle is axisymmetric
about the double arrow line

To obtain unique solutions of Tℓ and Ts, both initial and boundary conditions including the
Gibbs-Thomson moving boundary condition (Langer, 1980) are applied to give
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IC Ts = Tℓ on R(t = 0) = a

BC Tℓ = Ta on r = a
∂Ts
∂r
= 0 on r = 0

Tℓ = Ts = Tf (R) on r = R(t)

MBC kℓ
∂Tℓ
∂r
− ks
∂Ts
∂r
= −ρℓ

dR(t)

dt
[(cℓ − cs)(Tf (R)− Tm) + L] on r = R(t)

(2.2)

where kℓ, ks, ρℓ, cℓ, cs, Tf , Tm and L denote the thermal conductivity of the liquid, thermal
conductivity of the solid, density of the material, specific heat capacity of the liquid, specific heat
capacity of the solid, curvature dependent temperature of the melting point, melting temperature
and latent heat, respectively. For simplicity, we drop (t) for R(t). We also note that Ts ¬ Tℓ ¬ Ta.
In addition, the curvature-dependent melting point, known as the Gibbs-Thomson effect,

which basically implies a modification (decrease) of the melting temperature by surface tension,
is defined below

Tf (R) = Tm
(

1−
ω

R

)

ω =
2σ

ρsL
(2.3)

where σ and ρs further denote the interfacial tension coefficient and mass density of the solid,
respectively. In addition, capillary pressure is radially dependent due to the term ω/R.

3. Quasi-stationary approximation simulation

To simulate the melting process, instead of solving more complicated diffusion equations, i.e.
Eq. (2.1), we adopt a quasi-approximation approach, where we assume that the system and the
Peclet number are tiny that it can reach a quasi-stationary state (Howison, 2005) for each time
step so that the time evolution of the moving boundary can be updated by simulations (3.4). We
assume Ts is constant for all times, which is valid due to the tiny size of particles as well as the
satisfaction of Eq. (2.1) as well as the boundary conditions. The aforementioned assumptions
will be relaxed in the later Sections. Using separation of variables, we obtain a general solution
of Tℓ, which is given by

Tℓ = e
λt

[

A sinh
(√

λ
κℓ
r
)

+B cosh
(√

λ
κℓ
r
)

r

]

(3.1)

where λ is the separation constant yet to be determined by the boundary conditions. Moreover,
λ, A and B are to be obtained from the initial and boundary conditions excluding the moving
boundary, which are given below

A sinh
(√

λ
κℓ
a
)

+B cosh
(√

λ
κℓ
a
)

a
= Ts
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R
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R
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= Tf (R)

(3.2)

To maintain the compatibility of the first and second equations of Eq. (3.2), we can estimate λ
as λ = (1/a) log(Ta/Ts), which makes sense when a temporal change in the molten temperature
depends on temperature differences between the embedding environment and solid temperature.
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It also depends on how big a micro/nanoparticle is. Therefore, the conditions of Eq. (3.2) reduce
from three to two. R is still unresolved, however the moving boundary condition provides an
extra condition to save us

min
0¬R¬a

{
∣

∣

∣kℓ
∂Tℓ
∂r
+ ρℓ
a−R

∆t
[(cℓ − cs)(Tf (R)− Tm) + L]

∣

∣

∣

}

(3.3)

Now, Eqs. (3.2) and (3.3) can be used to obtain A, B and R. Since multiple solutions are possible,
we only select A and B, when R is close to a when a tiny time is chosen. Given that the trace of
the moving boundary can be estimated using the modified Euler method taking both the speed
and curvature into account

Rn+1 = Rn +∆t
dRn
dt
+
∆t2

2!

d2Rn
dt2

(3.4)

where n denotes the number of iterations to trace the moving boundary. We firstly use Eq. (3.4)
to simulate the moving boundary of gold microparticles of the size 1 nm using the parameters
given in Table 1. In addition, we let Ts = 300K and Ta = 2000K. Using Eqs. (3.2) and (3.3),
the coefficients A and B for gold are estimated to be −0.58822 and 0.00124, respectively. From
which, we can first estimate λ = 0.1897 ·107 . Parameters for Sn and Pb can be found in Table 1.
Now, we adopt Eq. (3.4) to simulate the location of the moving boundaries for the proposed
metals, where the numerical results are shown in Fig. 2.

Table 1. Parameters for Au, Sn and Pb (McCue et al., 2009)

Parameters Gold Sn Pb

ρs 19.3 · 103 kg/m3 7.27 · 103 kg/m3 11.34 · 103 kg/m3

ρℓ 17.31 · 103 kg/m3 6.99 · 103 kg/m3 10.66 · 103 kg/m3

L 63718 J/kg 59225 J/kg 23020 J/kg

Tm 1337.3K 505.8K 600.6K

ω 0.2396 nm 0.4447 nm 0.6847 nm

κℓ = kℓ/(ρℓcℓ) 1.47 · 10−3m2/s 1.36 · 10−3m2/s 0.684 · 10−3m2/s

kℓ 320W/(m·K) 67W/(m·K) 35W/(m·K)

cs 0.128 J/gK 0.226 J/gK 0.13 J/gK

cℓ 12.55 J/gK 7.029 J/gK 4.799 J/gK

Fig. 2. Melting process for Au, Sn and Pb
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We can observe from Fig. 2 that the moving boundaries retreat steadily or initially linearly
but accelerate rapidly, even with a blowup after 2 ·10−8 s. Such behavior will be fully scrutinized
in Section 5.

4. Weak formulation

A weak formulation forms a basis for seeking weak solutions and the finite element method.
In this Section, we determine the weak formulation of Eq. (2.1). Upon multiplying both sides
of Eq. (2.1) by v ∈ C∞(I, V ), where I and V denote the usual temporal and spatial domains,
respectively, and upon integrating by parts and applying appropriate boundary conditions at R
and a, we obtain

a
∫

R
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v dr = −κℓ
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v
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∂r
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R
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dr − 2

a
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r
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d r

)

(4.1)

Similarly, we obtain the weak formulation for Ts
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∂Ts
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v dr = κs

(
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r
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)

(4.2)

where the weak solutions for Eqs. (4.1) and (4.2) have been thoroughly studied using the coerciv-
ity of Tℓ and Ts, the first temporal derivatives, proper growth conditions and pseudomonotonic
or weakly continuous approaches for the nonlinearity (Roubiček, 2013).

5. Asymptotic analysis

Now we relax that Ts is a constant and illustrate the asymptotic behavior of the moving boundary
using an energy method as given in the previous Section. Replacing v in Eqs. (4.1) and (4.2) by
Tℓ and Ts, respectively, we obtain
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where we have used the boundary conditions that Tℓ = Ts = Tf (R) on r = R(t) to obtain
Eq. (5.1). For simplicity, we have dropped the notation of temporal and spatial domains. The
values in H(·) denote the integration limit for integrals in Eqs. (4.1) and (4.2), where R ∈ [0, a].

— In the initial stage, since the molten state is completely absent, we have
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— In the final stage, since the condensed state is completely absent, we have
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— In the intermediate stage, both the solid and molten stages coexist so that by using
Eq. (5.1) the change in total kinetic energies for both the solid and molten regimes is obtained
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where we have assumed κℓ ≈ kℓ and κs ≈ ks (or else if there are linear relations between
thermal diffusivities and conductivities). We comment that there is a common relation between
them for simple metals, i.e. κi = ki/(ρici), where i = s, ℓ (McCue et al., 2009), and the moving
boundary condition is imposed in the second equation of Eq. (5.4). We might make rather
restrictive assumptions here for mathematical convenience as we can yield dR/dt and make
certain simplifications using the moving boundary condition as given in Eq. (2.2). Now, the
asymptotic speed of the moving boundary condition can be matched with the melting speeds of
the initial and final stages.

— In the nearly initial stage, upon ignoring Tℓ, Eq. (5.4) becomes
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(5.5)

where ε denotes an infinitesimal positive number. Now comparing Eq. (5.5) with Eq. (5.2), we
obtain

dR

dt
= −
κsa

ρℓ

[ 1

(cℓ − cs)Tmω − aL

]∂Ts
∂r

∣

∣

∣

a
+O(ε) (5.6)

Hence, the melting speed is linearly proportional to the heat flux across the boundary. We
comment that in this formulation, whether the initial temperature is fusion or not, (Kucera and
Hill, 1986) it is not crucial.

— In the nearly melting stage, upon ignoring Ts and matching Eq. (5.4) with Eq. (5.3), we
obtain

dR

dt
=
κℓ
ρℓ

[

(cℓ − cs)
Tmω

ε
− L

]−1∂Tℓ
∂r
|ε (5.7)

where the melting speed blows up when

ε∗ =
(cℓ − cs)Tmω

L
(5.8)
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Hence, we can observe from Eq. (5.8) that no blowup is observed when the surface tension is
zero happening in the macroscopic melting problems. Figure 2 confirms the linear correlation
with the temperature flux and the blowup in the initial and final stages, respectively. ε∗ is
0.62466 · 10−10 m, 0.25837 · 10−10 m and 0.83407 · 10−10 m for Au, Sn and Pb, respectively, which
partially agrees with Fig. 2, where Sn supposes to melt the slowest but it melts the fastest
simply due to the fact that we neglect the heat transfer in the sold regime when we conduct the
quasi-stationary approach.

6. Conclusion

Using the weak formulation of the Stefan problem and asymptotic matchings, we find that
the retreating speed of the moving boundary of spherical micro/nanoparticles depends initially
linearly on the incoming heat flux but blows up in the finite time at the latter stage without
solving the original equations. No boundary problem occurs as the boundary conditions are
absorbed naturally in the weak formulation. Such techniques can be employed to two and multi-
phase change problems. A quasi-stationary approximation has also been employed to verify the
claims of our theoretical results.
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